WIKINDX Resources

Koutsoyiannis, D. (2014). Entropy: From thermodynamics to hydrology. Entropy, 16(3), 1287–1314. 
Added by: Christoph Külls (2021-09-18 17:15:34)   
Resource type: Journal Article
DOI: 10.3390/e16031287
ID no. (ISBN etc.): 1099-4300
BibTeX citation key: Koutsoyiannis2014
View all bibliographic details
Categories: Hydrology
Creators: Koutsoyiannis
Collection: Entropy
Views: 5/1349
Views index: 91%
Downloads index: 25%
Popularity index: 41.5%
Attachments   entropy-16-01287.pdf [1/248] URLs   https://www.mdpi.com/1099-4300/16/3/1287
Some known results from statistical thermophysics as well as from hydrology are revisited from a different perspective trying: (a) to unify the notion of entropy in thermodynamic and statistical/stochastic approaches of complex hydrological systems and (b) to show the power of entropy and the principle of maximum entropy in inference, both deductive and inductive. The capability for deductive reasoning is illustrated by deriving the law of phase change transition of water (Clausius-Clapeyron) from scratch by maximizing entropy in a formal probabilistic frame. However, such deductive reasoning cannot work in more complex hydrological systems with diverse elements, yet the entropy maximization framework can help in inductive inference, necessarily based on data. Several examples of this type are provided in an attempt to link statistical thermophysics with hydrology with a unifying view of entropy.
Added by: Christoph Külls  
WIKINDX 6.4.0 | Total resources: 119 | Username: -- | Bibliography: WIKINDX Master Bibliography | Style: American Psychological Association (APA) | Database queries: 50 | DB execution: 0.06757 secs | Script execution: 0.08570 secs